\(\int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\) [328]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 137 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {3 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d}+\frac {3 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{3 d} \]

[Out]

3/8*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))*a^(1/2)/d+3/8*a*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-1/1
2*a*cot(d*x+c)*csc(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-1/3*cot(d*x+c)*csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {2953, 3054, 3059, 2851, 2852, 212} \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {3 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{8 d}+\frac {3 a \cot (c+d x)}{8 d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a \sin (c+d x)+a}}{3 d}-\frac {a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a \sin (c+d x)+a}} \]

[In]

Int[Cot[c + d*x]^2*Csc[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(3*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(8*d) + (3*a*Cot[c + d*x])/(8*d*Sqrt[a +
a*Sin[c + d*x]]) - (a*Cot[c + d*x]*Csc[c + d*x])/(12*d*Sqrt[a + a*Sin[c + d*x]]) - (Cot[c + d*x]*Csc[c + d*x]^
2*Sqrt[a + a*Sin[c + d*x]])/(3*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2953

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/b^2, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /;
 FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[n, 0])

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc ^4(c+d x) (a-a \sin (c+d x)) (a+a \sin (c+d x))^{3/2} \, dx}{a^2} \\ & = -\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{3 d}+\frac {\int \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)} \left (\frac {a^2}{2}-\frac {3}{2} a^2 \sin (c+d x)\right ) \, dx}{3 a^2} \\ & = -\frac {a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{3 d}-\frac {3}{8} \int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = \frac {3 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{3 d}-\frac {3}{16} \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx \\ & = \frac {3 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{3 d}+\frac {(3 a) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d} \\ & = \frac {3 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d}+\frac {3 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)}}{3 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(285\) vs. \(2(137)=274\).

Time = 1.50 (sec) , antiderivative size = 285, normalized size of antiderivative = 2.08 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=-\frac {\csc ^{10}\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sin (c+d x))} \left (-12 \cos \left (\frac {1}{2} (c+d x)\right )+58 \cos \left (\frac {3}{2} (c+d x)\right )+18 \cos \left (\frac {5}{2} (c+d x)\right )+12 \sin \left (\frac {1}{2} (c+d x)\right )-27 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x)+27 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x)+58 \sin \left (\frac {3}{2} (c+d x)\right )-18 \sin \left (\frac {5}{2} (c+d x)\right )+9 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (3 (c+d x))-9 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (3 (c+d x))\right )}{24 d \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right ) \left (\csc ^2\left (\frac {1}{4} (c+d x)\right )-\sec ^2\left (\frac {1}{4} (c+d x)\right )\right )^3} \]

[In]

Integrate[Cot[c + d*x]^2*Csc[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-1/24*(Csc[(c + d*x)/2]^10*Sqrt[a*(1 + Sin[c + d*x])]*(-12*Cos[(c + d*x)/2] + 58*Cos[(3*(c + d*x))/2] + 18*Cos
[(5*(c + d*x))/2] + 12*Sin[(c + d*x)/2] - 27*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*Sin[c + d*x] + 27*Lo
g[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]*Sin[c + d*x] + 58*Sin[(3*(c + d*x))/2] - 18*Sin[(5*(c + d*x))/2] +
9*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*Sin[3*(c + d*x)] - 9*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2
]]*Sin[3*(c + d*x)]))/(d*(1 + Cot[(c + d*x)/2])*(Csc[(c + d*x)/4]^2 - Sec[(c + d*x)/4]^2)^3)

Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.05

method result size
default \(\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (9 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {5}{2}} a^{\frac {3}{2}}+9 \,\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) a^{4} \left (\sin ^{3}\left (d x +c \right )\right )-8 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {3}{2}} a^{\frac {5}{2}}-9 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {7}{2}}\right )}{24 a^{\frac {7}{2}} \sin \left (d x +c \right )^{3} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(144\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/24*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a^(7/2)*(9*(-a*(sin(d*x+c)-1))^(5/2)*a^(3/2)+9*arctanh((-a*(sin(
d*x+c)-1))^(1/2)/a^(1/2))*a^4*sin(d*x+c)^3-8*(-a*(sin(d*x+c)-1))^(3/2)*a^(5/2)-9*(-a*(sin(d*x+c)-1))^(1/2)*a^(
7/2))/sin(d*x+c)^3/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 361 vs. \(2 (117) = 234\).

Time = 0.29 (sec) , antiderivative size = 361, normalized size of antiderivative = 2.64 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {9 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) - 4 \, {\left (9 \, \cos \left (d x + c\right )^{3} + 19 \, \cos \left (d x + c\right )^{2} - {\left (9 \, \cos \left (d x + c\right )^{2} - 10 \, \cos \left (d x + c\right ) - 11\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 11\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{96 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} - {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) - d\right )} \sin \left (d x + c\right ) + d\right )}} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/96*(9*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 - (cos(d*x + c)^3 + cos(d*x + c)^2 - cos(d*x + c) - 1)*sin(d*x + c)
 + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c)
 - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x +
 c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c)
 - 1)) - 4*(9*cos(d*x + c)^3 + 19*cos(d*x + c)^2 - (9*cos(d*x + c)^2 - 10*cos(d*x + c) - 11)*sin(d*x + c) - co
s(d*x + c) - 11)*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 - (d*cos(d*x + c)^3 + d*cos(
d*x + c)^2 - d*cos(d*x + c) - d)*sin(d*x + c) + d)

Sympy [F(-1)]

Timed out. \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**4*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int { \sqrt {a \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \csc \left (d x + c\right )^{4} \,d x } \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*cos(d*x + c)^2*csc(d*x + c)^4, x)

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.34 \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\frac {\sqrt {2} {\left (9 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (36 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 16 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 9 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/96*sqrt(2)*(9*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi +
 1/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + 4*(36*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*p
i + 1/2*d*x + 1/2*c)^5 - 16*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c)^3 - 9*sgn(cos(-
1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt(a)
/d

Mupad [F(-1)]

Timed out. \[ \int \cot ^2(c+d x) \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\sin \left (c+d\,x\right )}^4} \,d x \]

[In]

int((cos(c + d*x)^2*(a + a*sin(c + d*x))^(1/2))/sin(c + d*x)^4,x)

[Out]

int((cos(c + d*x)^2*(a + a*sin(c + d*x))^(1/2))/sin(c + d*x)^4, x)